Numerically trivial involutions of Kummer type of an Enriques surface

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerically Trivial Involutions of Kummer Type of an Enriques Surface

There are two types of numerically trivial involutions of an Enriques surface according as their period lattice. One is U(2) ⊥ U(2)-type and the other is U ⊥ U(2)-type. An Enriques surface with an involution of U(2) ⊥ U(2)-type is doubly covered by a Kummer surface of product type, and such involutions are classified again into two types according as the parity of the corresponding Göpel subgro...

متن کامل

Kummer’s Quartics and Numerically Reflective Involutions of Enriques Surfaces

A (holomorphic) automorphism of an Enriques surface S is said to be numerically reflective if it acts on the cohomology group H(S,Q) by reflection. We shall show that there are two lattice-types of numerically reflective involutions, and describe one type geometrically in terms of curves of genus 2 and Göpel subgroups of their Jacobians. An automorphism of an Enriques surface S is numerically t...

متن کامل

Numerically Trivial Fibrations

We develop an intersection theory for a singular hermitian line bundle with positive curvature current on a smooth projective variety and irreducible curves on the variety. And we prove the existence of a natural rational fibration structure associated with the singular hermitian line bundle. Also for any pseudoeffective line bundle on a smooth projective variety, we prove the existence of a na...

متن کامل

Enriques surfaces covered by Jacobian Kummer surfaces

This paper classifies Enriques surfaces whose K3-cover is a fixed Picard-general Jacobian Kummer surface. There are exactly 31 such surfaces. We describe the free involutions which give these Enriques surfaces explicitly. As a biproduct, we show that Aut(X) is generated by elements of order 2, which is an improvement of the theorem of S. Kondo.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kyoto Journal of Mathematics

سال: 2010

ISSN: 2156-2261

DOI: 10.1215/0023608x-2010-017